

Definition of various terms

Basic Level

1.			st coin shows head and B b	e the event that the second coin
	shows a tail. Two event	s A and B are		
	(a) Mutually exclusive		(b) Dependent	
	(c) Independent and m	•	(d) None of these	
2.	A card is drawn from a diamond, then events A	-	is of diamond, $B = card$ is a	an ace and $A \cap B = $ card is ace of
	(a) Independent	(b) Mutually exclusive	(c) Dependent	(d) Equally likely
3.	The probabilities of thr	ee mutually exclusive events	are $2/3$, $1/4$ and $1/6$. The s	tatement is
	(a) True	(b) False	(c) Could be either	(d) Do not know
4.	If $P(A_1 \cup A_2) = 1 - P(A_1^c) P(A_1^c)$	A_2^c), where c stands for comp	lement, then the events A_1	and A_2 are
	(a) Mutually exclusive	(b) Independent	(c) Equally likely	(d) None of these
5.	If $\frac{1-3p}{2}, \frac{1+4p}{3}$ and $\frac{1+6}{6}$	$\frac{p}{}$ are the probabilities of th	ree mutually exclusive and	exhaustive events, then the set
	of all values of p is			
			[MNR 1992; R	ajasthan PET 2000; UPSEAT 2000]
	(a) [0, 1]	(b) $\left[-\frac{1}{4}, \frac{1}{3}\right]$	(c) $\left[0,\frac{1}{3}\right]$	(d) (0,∞)
6.	The event A is independ	lent of itself if and only if $P(A)$	4) =	
	(a) O	(b) 1	(c) 0, 1	(d) None of these
7•	If A and B are independ	ent events and $P(C) = 0$, then		
	(a) A and C are independent	ndent	(b) B and C are independent	ndent
	(c) A , B and C are indep	pendent	(d)	All of these
				Definition of Probability
		Basic	Level	
_				
8.	= -	ordinary or a non-leap year l		(1) 27 (1)
	(a) 2/7	(b) 1/7	(c) 3/7	(d) None of these
9.		sent to different persons and s, the probability that the lett		elopes are also written. Without pe is equal to
	(a) 1/27	(b) 1/9	(c) 4/27	(d) 1/6
10.	The probability of getti	ng head and tail alternately in	n three throws of a coin (or	a throw of three coins), is

CLICK HERE

ro	hal	oili [.]	tv	2.1

	(a) $\frac{1}{8}$	(b) $\frac{1}{4}$	(c) $\frac{1}{3}$	(d) $\frac{3}{8}$
11.	In a lottery there were two of the tickets drawn	90 tickets numbered 1 to 90. F numbers 15 and 89 is	live tickets were drawn at r	andom. The probability that
	(a) 2/801	(b) 2/623	(c) 1/267	(d) 1/623
12.	Two numbers are select	cted randomly from the set	$S = \{1, 2, 3, 4, 5, 6\}$ without rej	placement one by one. The
	probability that minimum	m of the two numbers is less th	an 4 is	
	(a) 1/15	(b) 14/15	(c) 1/5	(d) 4/5
13.		e batsmen and 7 are bowlers. I	Find the probability that a t	team is chosen of 6 batsmen
	and 5 bowlers			[UPSEAT 2002]
	(a) $\frac{{}^{8}C_{6} \times {}^{7}C_{5}}{{}^{15}C_{11}}$	(b) $\frac{{}^{8}C_{6} + {}^{7}C_{5}}{{}^{15}C_{11}}$	(c) $\frac{15}{28}$	(d) None of these
14.	The probability of obtain	ning sum '8' in a single throw o	f two dice	
	(a) $\frac{1}{36}$	(b) $\frac{5}{36}$	(c) $\frac{4}{36}$	(d) $\frac{6}{36}$
	30			
15.	Three mangoes and thre mango and the other is a	ee apples are in a box. If two finn apple is	ruits are chosen at random,	the probability that one is a
	(a) $\frac{2}{3}$	(b) $\frac{3}{5}$	(c) $\frac{1}{3}$	(d) None of these
16	3	3	3	ability of duarring a number
16.	which is a square is	om from a pack of 100 cards n	umbered 1 to 100. The prob	
	1	2	1	[EAMCET 1989]
	(a) $\frac{1}{5}$	(b) $\frac{2}{5}$	(c) $\frac{1}{10}$	(d) None of these
17.	A bag contains 5 white, that all the three balls as	7 black and 4 red balls. Three l re white, is	balls are drawn from the ba	g at random. The probability
	(a) $\frac{3}{16}$	(b) $\frac{3}{5}$	(c) $\frac{1}{60}$	(d) $\frac{1}{56}$
18.	Two dice are thrown tog	ether. The probability that at le	east one will show its digit 6	is
	(a) $\frac{11}{36}$	(b) $\frac{36}{11}$	(c) $\frac{5}{11}$	(d) $\frac{1}{6}$
		11	11	O .
19.	-	numbers is 100. The probabilit		
		(b) 7/10	•	
20.	(a) 1/2	at random and multiplied. The (b) 2/3	(c) 3/4	t is an even integer is (d) 4/5
21.		, if 5 appears on at least one		= . =
21,	greater is	[MP PET 2001]	of the diee, then the proof	tonity that the bank is to or
	(a) $\frac{11}{36}$	(b) $\frac{2}{9}$	(c) $\frac{3}{11}$	(d) $\frac{1}{12}$
22.	Four boys and three girls	s stand in a queue for an interv	iew, probability that they w	ill in alternate position is[upseat :
	(a) 1/34	(b) 1/35	(c) 1/17	(d) 1/68
23.		imultaneously then probability		_
	(a) 1/36	(b) 5/36	(c) 1/6	(d) None of these
24.		imbers, 2 are chosen at random		
	(a) $\frac{14}{29}$	(b) $\frac{16}{29}$	(c) $\frac{15}{29}$	(d) $\frac{10}{29}$
25.		2)	27	t their product is even, is[Kuruksho

22	Probability			
	(a) $\frac{2}{19}$	(b) $\frac{3}{29}$	(c) $\frac{17}{19}$	(d) $\frac{4}{19}$
26.	Two dice are thrown	n. The probability that the su	ım of the points on two dice w	vill be 7, is
		[1]	IT 1974; MNR 1981, 91; Rajastha	n PET 1995, 97, 2002; UPSEAT 2000]
	(a) $\frac{5}{36}$	(b) $\frac{6}{36}$	(c) $\frac{7}{36}$	(d) $\frac{8}{36}$
27.	A bag contains ticke	ets numbered from 1 to 20.	Гwo tickets are drawn. The pr	obability that both the numbers are
	prime, is	[AISSE 1981]		
	(a) $\frac{14}{95}$	(b) $\frac{7}{95}$	(c) $\frac{1}{95}$	(d) None of these
28.	75	two dice, the probability of	75	
	7	7	_	(4) 5
	(a) $\frac{7}{36}$	(b) $\frac{7}{12}$	(c) $\frac{5}{12}$	(d) $\frac{5}{36}$
29.		_	ability of the event that the s	um of the integers coming on the
	upper sides of the tv		(a) 1/0	(4) 1/6
	(a) 7/18 The probability of gr	(b) 5/36 etting number 5 in throwing	(c) 1/9	(d) 1/6 [MP PET 1988]
0.	(a) 1	(b) 1/3	(c) 1/6	(d) 5/6
1.		etting a number greater thar	•	(4) 3/ 0
	(a) 1/3	(b) 2/3	(c) 1/2	(d) 1/6
2.	The chance of throw	ring at least 9 in a single thr	ow with two dice, is	
	(a) $\frac{1}{18}$	(b) $\frac{5}{18}$	(c) $\frac{7}{18}$	(d) $\frac{11}{18}$
	16	10	10	
3.	The probability that	2	a pack of 52 cards are all red	2
	(a) $\frac{1}{17}$	(b) $\frac{3}{19}$	(c) $\frac{2}{19}$	(d) $\frac{2}{17}$
4.	The probability of go	etting a total of 5 or 6 in a si	17	1,
т.	(a) 1/2	(b) 1/4	(c) 1/3	(d) 1/6
85.	If a committee of		: : ! =	you are a member. What is the
	(38)	(25)	(c) $\binom{37}{2} / \binom{38}{3}$	(1) 666 (0) (6
	(a) $\binom{36}{3}$	(b) $\binom{37}{2}$	(c) $\binom{2}{3}$	(d) 666/8436
6.	The chance of gettin	g a doublet with 2 dice is		[Kurukshetra CEE 2002]
	(a) $\frac{2}{3}$	(b) $\frac{1}{6}$	(c) $\frac{5}{6}$	(d) $\frac{5}{36}$
	3	O	0	
37.	_	ite and 5 black balls. If one b	oall is drawn, then the probab	-
	(a) $\frac{3}{8}$	(b) $\frac{5}{8}$	(c) $\frac{6}{8}$	(d) $\frac{10}{20}$
8.	Two dice are thrown	n together. The probability t	hat sum of the two numbers w	vill be a multiple of 4 is
	(a) 1/9	(b) 1/3	(c) 1/4	(d) 5/9
9.	The probability of h	appening of an impossible ev	vent <i>i.e.</i> , $P(\phi)$ is	
	(a) 1	(b) o	(c) 2	(d) - 1
0.	For any event A			[Rajasthan PET 1995]
	(a) $P(A) + P(\overline{A}) = 0$	(b) $P(A) + P(\overline{A}) = 1$	(c) $P(A) > 1$	(d) $P(\overline{A}) < 1$
ļ1.	A bag contains 3 red different colours is	l, 4 white and 5 black balls.	Three balls are drawn at rand	lom. The probability of being their
	anici cite coloui 5 15			[Rajasthan PET 1999]
	(a) 3/11	(b) 2/11	(c) 8/11	(d) None of these

2.	digit is allowed)	ity that the two digit number	formed by digits 1, 2, 3, 4, 5	is divisible by 4 (while repetition of UPSEAT 2002)
	(a) $\frac{1}{30}$	(b) $\frac{1}{20}$	(c) $\frac{1}{40}$	(d) None of these
		20	40	
		= 0.15, then $P(\overline{A}) + P(\overline{B}) =$		[Pb. CET 1989; EAMCET
	1988]	(b) 12	(a) 0.0	(d) None of these
	(a) 1.5	(b) 1.2	(c) 0.8	(d) None of these 4 children. Then the probability that
	exactly two of the		oup of 3 men, 2 women and	4 children. Then the probability that
	[Kurukshetra CEE 1			
	(a) 10/21	(b) 8/63	(c) 5/21	(d) 9/21
	A single letter is s vowel is	selected at random from the v	vord "PROBABILITY". The p	robability that the selected letter is a
	(a) 2/11	(b) 2/11	(c) 4/11	[MNR 1986; UPSEAT 2000]
	(a) 2/11 The probability of	(b) 3/11 three persons having the same	· · -/	(d) 0
	(a) 1/365	(b) $1/(365)^2$	(c) $1/(365)^3$	(d) None of these
		•	· · · · · · · · · · · · · · · · · · ·	bability that their sum is odd is
	(a) 1/20	(b) 10/19	(c) 19/20	(d) 9/19
	· · ·	· · · · -	` ' - '	5. If the two numbers match, both on
		The probability that they wil		
	(a) 1/25	(b) 24/25	(c) 2/25	(d) None of these
	•	ents with $P(E) \le P(F)$ and $P(E)$	· · · · -	
		$E \Rightarrow \text{occurrence of } F$		$F \Rightarrow \text{ occurrence of } E$
		ce of $E \Rightarrow$ non-occurrence of		bove implications holds
				probability that it is a vowel is [Kuru
	(a) 4/5	(b) 3/7	(c) 8/21	(d) 2/5
	•	OSSESSIVE', a letter is chosen		
	_			
	(a) $\frac{3}{10}$	(b) $\frac{4}{10}$	(c) $\frac{3}{6}$	(d) $\frac{4}{6}$
	Out of 40 consecuodd, is	tive natural numbers, two ar	e chosen at random. Proba	bility that the sum of the numbers is
				[MP PET 2002]
	(a) $\frac{14}{29}$	(b) $\frac{20}{39}$	(c) $\frac{1}{2}$	(d) None of these
	29	37	2	
	Two dice are tosse	ed. The probability that the to	otal score is a prime number	is
	(a) $\frac{1}{6}$	(b) $\frac{5}{12}$	(c) $\frac{1}{2}$	(d) None of these
	0	1.2	2	efects. A pencil is choosen at random
		at this pencil is not defective		1
	(a) 3/5	(b) 3/10	(c) 4/5	(d) 1/2
		l 3 black balls are placed in		bability that no two black balls are
	1	(b) $\frac{7}{15}$	(c) $\frac{2}{15}$	(d) $\frac{1}{3}$
	(a) $\frac{1}{2}$	(h) —		

_	,			
56.	children have a one priced Re. 1. If all the	e-rupee coin each and the re	emaining 10 have a two-ru ldren are equally likely, the	Ghar in New Delhi. Ten of these upee coin each. The entry ticket is e probability that the 10 th will be the h)
	(a) $\frac{2^{10}}{^{20}C_{10}}$	(b) $\frac{^{20}C_{10}}{2^{10}}$	(c) O	(d) None of these
57•	_	3 two-rupee coins and 2 one- coins of the same denominat	=	gether in a column at random. The
	(a) $\frac{13}{9!}$	(b) $\frac{1}{210}$	(c) $\frac{1}{35}$	(d) None of these
58.	Two small squares of	on a chess board are chosen at	random. Probability that t	hey have a common side is
	(a) 1/3	(b) 1/9	(c) 1/18	(d) None of these
59.	=	is $(n \ge 3)$, among whom are are is exactly one person between		o stand in a row in random order.
	$(a) \frac{n-2}{n(n-1)}$	(b) $\frac{2(n-2)}{n(n-1)}$	(c) 2/n	(d) None of these
60.	If <i>m</i> rupee coins an paise coins is	d n ten paise coins are placed	l in a line, then the probab	ility that the extreme coins are ten
	(a) $^{m+n}C_m$	(b) $\frac{n(n-1)}{(m+n)(m+n-1)}$	(c) $^{m+n}P_m$	(d) $^{m+n}P_n$
61.	Twelve balls are dis	tributed among three boxes. T	The probability that the firs	t box contains 3 balls is
	(a) $\frac{110}{9} \left(\frac{2}{3}\right)^{10}$	(b) $\frac{9}{110} \left(\frac{2}{3}\right)^{10}$	(c) $\frac{^{12}C_3}{12^3}.2^9$	(d) $\frac{^{12}C_3}{3^{12}}$
62.	Six boys and six girl	ls sit in a row. What is the pro	bability that the boys and g	zirls sit alternately
	(a) 1/462	(b) 1/924	(c) 1/2	(d) None of these
63.	Word 'UNIVERSITY'	is arranged randomly. Then t	the probability that both 'I'	does not come together, is
	(a) $\frac{3}{5}$	(b) $\frac{2}{5}$	(c) $\frac{4}{5}$	(d) $\frac{1}{5}$
64.	A fair coin is tossed fifth toss equals	l repeatedly. If tail appears o [IIT 1998]	on first four tosses, then th	ne probability of head appearing on
	(a) 1/2	(b) 1/32	(c) 31/32	(d) 1/5
65.		hosen at random. The set of ue of the determinant chosen i	is positive, is	2 with elements 0 or 1 only. The
	(a) $\frac{3}{16}$	(b) $\frac{3}{8}$	(c) $\frac{1}{4}$	(d) None of these
66.		s for a job, there are 5 women east one of the selected person		to select 2 persons for the job. The
	(a) 25/39	(b) 14/39	(c) 5/13	(d) 10/13
67.		elected at random from 1, 2, 3 hat the product thus obtained		, then the probability correct to two
	(a) 0.55	(b) 0.44	(c) 0.22	(d) 0.33
68.	Five digit numbers even digits at both t		1, 2, 3, 4, 5, 6, and 8. Wha	at is the probability that they have [Rajasthan PET 1999
	(a) 2/7	(b) 3/7	(c) 4/7	(d) None of these
69.		nlar tetrahedrons are number vard corners will be 5 is	red 1, 2, 3, 4. Three tetraho	edrons are tossed. The probability

(c) 3/32

(d) 3/16

(b) 5/64

(a) 5/24

(d) 1/35

[AMU 1999]

	(a) $\frac{1}{6}$	(b) $\frac{3}{8}$	(c) $\frac{3}{8}$	(d) $\frac{3}{6}$
72.	There are <i>m</i> persons sitt persons are not together	ing in a row. Two of them are s , is	selected at random. The pro	bability that the two selected
	(a) $\frac{2}{m}$	(b) $1 - \frac{2}{m}$	(c) $\frac{m(m-1)}{(m+1)(m+2)}$	(d) None of these
73.	If the integers m and n	are chosen at random betwee	n 1 and 100, then the prob	pability that a number of the
	form $7^m + 7^n$ is divisible	by 5 equals		
	(a) $\frac{1}{4}$	(b) $\frac{1}{7}$	(c) $\frac{1}{8}$	(d) $\frac{1}{49}$
74.		one at random from a well shuf number of cards required to be	_	
	(a) $\frac{(n-1)(52-n)(51-n)}{50\times49\times17\times13}$	(b) $\frac{2(n-1)(52-n)(51-n)}{50\times49\times17\times13}$	(c) $\frac{3(n-1)(52-n)(51-n)}{50\times49\times17\times13}$	(d) $\frac{4(n-1)(52-n)(51-n)}{50\times49\times17\times13}$
75.	-	by dialing a fixed three digit open the locker by dialing thr		_
	succeeds at the k^{th} trial	is		
	(a) $\frac{k}{999}$	(b) $\frac{k}{1000}$	(c) $\frac{k-1}{1000}$	(d) None of these
76.	Seven white balls and that are placed adjacently eq	nree black balls are randomly p uals	placed in a row. The probab	bility that no two black balls
	(a) 1/2	(b) 7/15	(c) 2/15	(d) 1/3
77•		9 experts taken from three inst s resign, then the probability th		
	(a) $\frac{1}{729}$	(b) $\frac{1}{24}$	(c) $\frac{1}{21}$	(d) $\frac{2}{7}$
78.		s and it is known that exactly to ne faulty machines are identified		
	(a) 1/3	(b) 1/6	(c) 1/2	(d) 1/4
79.	A five digit number is fo probability that the num	rmed by writing the digits 1, 2, ber is divisible by 4 is	3, 4, 5 in a random order v	without repetitions. Then the
	(a) 3/5	(b) 18/5	(c) 1/5	(d) 6/5
80.	independently and with	he lift cabin on the ground fl n equal probability can leave rsons leaving at different floors	the cabin at any floor be	
	(a) $\frac{7^5}{^7P_5}$	(b) $\frac{^{7}P_{5}}{7^{5}}$	(c) $\frac{5!}{7^5}$	(d) 1
81.		nts than the value of the determ of 1 only is positive or negative r		from all the determinants of
	(a) $P(A) \ge P(B)$	(b) $P(A) \leq P(B)$	(c) $P(A) = P(B) = 1/2$	(d) None of these

If four vertices of a regular octagon are chosen at random, then the probability that the quadrilateral formed

In a college, 25% of the boys and 10% of the girls offer Mathematics. The girls constitute 60% of the total

number of students. If a student is selected at random and is found to be studying Mathematics, the probability

(c) 1/32

70.

71.

(a) 1/8

by them is a rectangle is

that the student is a girl, is

(b) 2/21

[MP PET 2001]

	up at random. The pro	bability that the five numbers	have x_{20} as the middle nu	imber is
	(a) $\frac{{}^{20}C_2 \times {}^{30}C_2}{{}^{50}C_5}$	(b) $\frac{{}^{30}C_2 \times {}^{19}C_2}{{}^{50}C_5}$	(c) $\frac{{}^{19}C_2 \times {}^{31}C_3}{{}^{50}C_5}$	(d) None of these
83.		n a pack. The card is replaced rts, 2 diamonds and 2 black ca	——————————————————————————————————————	led. If this is done six times, the
	(a) $90.\left(\frac{1}{4}\right)^6$	(b) $\frac{45}{2} \cdot \left(\frac{3}{4}\right)^4$	(c) $\frac{90}{2^{10}}$	(d) None of these
84.	An even number of car the other half black is	ds is drawn from a pack of 52	cards. The probability that	half of these cards will be red and
	(a) $\frac{^{52}C_2}{2^{51}-1}$	(b) $\frac{{}^{52}C_{26}-1}{2^{51}-1}$	(c) $\frac{^{52}C_2-1}{2^{51}-1}$	(d) $\frac{^{52}C_2}{2^{51}+1}$
85.	Two numbers a and b by 3 is	are chosen at random from the	ne set $\{1, 2, 3,, 3n\}$ the p	probability that $a^2 - b^2$ is divisible
	(a) $\frac{5(n-3)}{3n-1}$	(b) $\frac{5(n+3)}{3n-1}$	(c) $\frac{5n-3}{3(3n-1)}$	(d) None of these
86.	The probability that th	ne birth days of six different po	ersons will fall in exactly t	two calendar months is
	(a) $\frac{1}{6}$	(b) $^{12}C_2 \times \frac{2^6}{12^6}$	(c) $^{12}C_2 \times \frac{2^6 - 1}{12^6}$	(d) $\frac{341}{12^5}$
87.	=	ite and n red balls. Pairs of bath pair consisting of balls of dif		placement until the bag is empty
	(a) $\frac{2^n}{2^n C_n}$	(b) $\frac{2^{n-1}}{2^n C_n}$	(c) $\frac{2^n}{2^{n-1}C_n}$	(d) 1
88.	pills that are similar i		official selects three of the	a bottle containing nine vitamir he tablets at random for analysis is is
	(a) $\frac{53}{63}$	(b) $\frac{53}{65}$	(c) $\frac{51}{65}$	(d) $\frac{13}{63}$
89.	Six different balls are boxes in equal number	-	no box being empty. The	probability of putting balls in the
90.				(d) None of thesene post. The probability of man'snat none of them will be selected(d) None of these
91.	Three six faced unbiasequal is			ctly two of the three numbers are
92.		ed by exactly two teachers is		(d) None of these, then the probability that all the(d) None of these
93.		(b) 12/49 se their seats randomly around	(c) 32/343 La circle. The probability (of their sitting is $(2^{m-1}C_m)^{-1}$ when
55.	(a) No two boys sit to		(b)	No two girls sit together
94.	(c) Boys and girls sit a	alternatively	(d)	All the boys sit together row (circle). If $p_1(p_2)$ denote the
	probability of all wom	en sitting together when they	are arranged in row (circl	e), then

 $x_1, x_2, x_3, \dots, x_{50}$ are fifty real numbers such that $x_r < x_{r+1}$ for $r = 1, 2, 3, \dots, 49$. Five numbers out of these are picked

	(a) $p_1 = \frac{m+1}{m+w} C_m$	(b) $p_1 + p_2 = \frac{2m + w + 1}{m + w} C_m$	(c) $p_1 = p_2$ if and only if	$w = 1$ (d) $p_2 < p_1$ if $w > 1$
95.		, toss a coin cyclically in that o that the coin shows a head. Let		
	and C gets the first head	. Then		
	(a) $\beta = (1-p)\alpha$	(b) $\gamma + 2p\alpha = (1+p^2)\alpha$	(c) $\alpha + \beta + \gamma = 1$	(d) $\alpha = 1/(3-3p+p^2)$
96.	Two players A and B tos	s a fair coin cyclically in the fol	llowing order A, A, B, A, A, B	till a head shows (that is, A

B.... till a head shows (that is, Awill be allowed first two tosses, followed by a single toss of B). Let $\alpha(\beta)$ denote the probability that A(B) gets the head first. Then (a) $\alpha = 6/7$ (b) $\alpha = 5/7$ (c) $\beta = 1/7$ (d) $\beta = 2/7$

Three political parties are contesting election for (2n+1) Lok Sabha seats, the probability that there will be a

coalition government after the election is (a) $\frac{4n+6}{n}$

(c) $\frac{n}{2n+3}$

(d) 1

A and B each throw a dice. The probability that A's throw is not greater than B's is 98.

97.

(b) 5/12

(c) 1/2

(d) 7/12

A binary operation is chosen at random from the set of all binary operations on a set A containing n elements. 99. The probability that the binary operation is commutative is

(b) $\frac{n^{n/2}}{n^2}$

(d) None of these

100. Let a die is loaded in such a way that even faces are twice as likely to occur as the odd faces. The probability that a prime number will show up when the die is tossed is

101. A special die with numbers 1, -1, 2, -2, 0 and 3 is thrown thrice. The probability that the total is zero is

(a) $\frac{25}{216}$

(c) $\frac{11}{216}$

(d) None of these

102. If four small squares are chosen at random on a chess board, the probability that they lie on a diagonal line is

(b) $\frac{11}{22692}$

103. A letter is taken at random out of each of the words CHOICE and CHANCE. The probability that they should be the same letter is

(b) 1/9

(c) 5/36

(d) 1/324

104. Let X be a set containing n elements. If two subsets A and B of X are picked at random, the probability that A and B have the same number of elements is

(c) $\frac{1.3.5...(2n-1)}{2^n(n!)}$

105. A four figure number is formed of the figures 1, 2, 3, 5 with no repetitions. The probability that the number is divisible by 5 is

(a) 3/4

(b) 1/4

(c) 1/8

(d) None of these

106. An elevator starts with m passengers and stops at n floors ($m \le n$). The probability that no two passengers alight at the same floor is

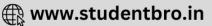
(a) $\frac{{}^{n}P_{m}}{m^{n}}$

(b) $\frac{{}^{n}P_{m}}{n^{m}}$

(c) $\frac{{}^{n}C_{m}}{m^{n}}$

(d) $\frac{{}^{n}C_{m}}{n^{m}}$

107. If ten objects are distributed at random among ten persons, the probability that at least one of them will not


(a) $\frac{10^{10}-10}{10^{10}}$

(b) $\frac{10^{10}-10!}{10^{10}}$

(c) $\frac{10^{10}-1}{10^{10}}$

(d) None of these

	Probability Cards are drawn	one by one without replaceme	ent from a pack of 52 cards.	The probability that 10 cards w
	precede the first a	_	1	1
	(a) $\frac{241}{1456}$	(b) $\frac{164}{4165}$	(c) $\frac{451}{884}$	(d) None of these
09.	Five different obje	ects A_1, A_2, A_3, A_4, A_5 are distrib	uted randomly in 5 places ma	rked 1, 2, 3, 4, 5. One arrangeme
	=		e selected arrangement, non	e of the object occupies the pla
	corresponding to i		(c) 11/30	(d) None of those
10.	(a) 119/120 4 gentlemen and 4	(b) 1/15 I ladies take seats at random r		(d) None of these that they are sitting alternately is
	(a) $\frac{4}{35}$	(b) $\frac{1}{70}$	(c) $\frac{2}{35}$	(d) $\frac{1}{35}$
111.	Let $x = 33^n$. The in in the units place i		al value at random. The proba	bility that the value of x will have
	(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{3}$	(d) None of these
l12.		in a row. Three persons take wo persons are consecutive is	seats at random. The probabi	lity that the middle seat is alway
	(a) $\frac{9}{70}$	(b) $\frac{9}{35}$	(c) $\frac{4}{35}$	(d) None of these
13.		s and 2 different pens are gine same boy does not receive b		gets equal number of things. The
	(a) $\frac{5}{11}$	(b) $\frac{7}{11}$	(c) $\frac{2}{3}$	(d) $\frac{6}{11}$
14.	The probability th	at out of 10 persons, all born i	n April, at least two have the	same birthday is
	(a) $\frac{^{30}P_{10}}{(30)^{10}}$	(b) $1 - \frac{^{30}C_{10}}{30!}$	(c) $\frac{(30)^{10} - {}^{30}P_{10}}{(30)^{10}}$	(d) None of these
15.		cards each, one after another ards drawn are of the same sui	_	d pack of 52 cards. The probabili
	(a) $\frac{44}{85 \times 49}$	(b) $\frac{11}{85 \times 49}$	(c) $\frac{13 \times 24}{17 \times 25 \times 49}$	(d) None of these
16.	Three different nu	imbers are selected at random	from the set $A = \{1, 2, 3,, 10\}$	}. The probability that the produ
	of two of the num	bers is equal to the third is		
	(a) $\frac{3}{4}$	(b) $\frac{1}{40}$	(c) $\frac{1}{8}$	(d) None of these
17.	A point is selected the boundary of the		a circle. The probability that t	the point is closer to the centre the
	(a) $\frac{3}{4}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) None of these
18.		either of them occurs is 1/3. T	=	B occur together is $1/6$ and the form A is
	(a) 0 or 1	(b) 1/2 or 1/3	(c) 1/2 or 1/4	(d) 1/3 or 1/4
			0.1.1	s in favour and Odds against

119. For an event, odds against is 6:5. The probability that event does not occur, is

Pro	ha	hi	lity	2.0
TU	υα	UI.	IILY	-29

(a)	$\frac{5}{6}$
	6

(b)
$$\frac{6}{11}$$

(c)
$$\frac{5}{11}$$

(d)
$$\frac{1}{6}$$

120. An event has odds in favour 4:5, then the probability that event occurs, is

(b)
$$\frac{4}{5}$$

(c) $\frac{4}{0}$

121. A card is drawn from a pack of 52 cards. A gambler bets that it is a spade or an ace. What are the odds against his winning this bet

(a) 17:52

(c) 9:4

(d) 4:9

122. The odds in favour of a certain event are 2:5 and odds against of another event are 5:6. If the events are independent, then the probability of happening of at least one of them is

(a) 50/77

(b) 51/77

(c) 52/77

(d) 53/77

123. In a horse race the odds in favour of three horses are 1:2, 1:3 and 1:4. The probability that one of the horse will win the race is

(a) $\frac{37}{60}$

(b) $\frac{47}{60}$

(c) $\frac{27}{60}$

(d) $\frac{17}{60}$

Advance Level

124. Odds 8 to 5 against a person who is 40 years old living till he is 70 and 4 to 3 against another person now 50 till he will be living 80. Probability that one of them will be alive next 30 years is

(a) 59/91

(b) 44/91

(c) 51/91

(d) 32/91

125. One of the two events must occur. If the chance of one is 2/3 of the other, then odds in favour of the other are

(b) 1:3

(c) 3:1

(d) 3:2

126. If a party of *n* persons sit at a round table, then the odds against two specified individuals sitting next to each other are [MP PET 2002]

(a) 2:(n-3)

(b) (n-3):2

(c) (n-2):2

(d) 2:(n-2)

127. If odds against solving a question by three students are 2:1,5:2 and 5:3 respectively, then probability that the question is solved only by one student is

(a) 31/56

(b) 24/56

(c) 25/56

(d) None of these

128. Odds in favour of an event A are 2 to 1 and odds in favour of $A \cup B$ are 3 to 1. Consistent with this information the smallest and largest values for the probability of event B are given by

(a) $\frac{1}{6} \le P(B) \le \frac{1}{3}$ (b) $\frac{1}{3} \le P(B) \le \frac{1}{2}$

(c) $\frac{1}{12} \le P(B) \le \frac{3}{4}$

(d) None of these

129. The chance of an event happening is the square of the chance of a second event but the odds against the first are the cube of the odds against the second. The chances of the events are

(b) $\frac{1}{16}, \frac{1}{4}$

(c) $\frac{1}{4}, \frac{1}{2}$

(d) None of these

Addition Theorem on Probability

Basic Level

130. If A and B are two mutually exclusive events, then P(A + B) =

[MNR 1978; MP PET 1991, 1992]

(a) P(A) + P(B) - P(AB)

(b) P(A) - P(B)

(c) P(A) + P(B)

(d) P(A) + P(B) + P(AB)

131. If A and B are two events such that $P(A \cup B) + P(A \cap B) = \frac{7}{8}$ and P(A) = 2P(B), then $P(A) = \frac{1}{8}$

	(a) 7/12	(b) 7/24	(c) 5/12	(d) 17/24
2.	A bag contains 5 br same colour is	own and 4 white socks. A	man pulls out two socks. The pr	robability that these are of the
				[UPSEAT 1999; MP PET 2000]
_	(a) 5/108	(b) 18/108	(c) 30/108	(d) 48/108
3.	The probability that	a leap year will have 53 Fri	days or 53 Saturdays is	[MP PET 2002; Roorkee
	(a) 2/7	(b) 3/7	(c) 4/7	(d) 1/7
Į.	A box contains 10 go it is either good or h		cts. One article is chosen at rando	om. What is the probability that
	(a) 24/64	(b) 40/64	(c) 49/64	(d) 64/64
5.	-	occurrence of two events a 16. Then the probability tha	re respectively 0.21 and 0.49. To t none of the two occurs is	he probability that both occurs
	(a) 0.30	(b) 0.46	(c) 0.14	(d) None of these
j.	A bag contains 30 ball is multiple of 5		one ball is drawn randomly. The	probability that number on the
	(a) 1/2	(b) 1/3	(c) 2/3	(d) 1/4
7.	If $P(A) = P(B) = x$ and	$P(A \cap B) = P(A' \cap B') = \frac{1}{3}$, then	<i>x</i> =	[UPSEAT 2003]
	(a) 1/2	(b) 1/3	(c) 1/4	(d) 1/6
3.	If the probability of <i>Y</i> fail in the examination		is 0.3 and that for Y is 0.2, then	the probability that either X or
	(a) 0.5	(b) 0.44	(c) 0.6	(d) None of these
•	A card is drawn from (a) 1/52	n a well shuffled pack of car (b) 1/26	ds. The probability of getting a q (c) 1/18	ueen of club or king of heart is (d) None of these
).	· · · • =	idependent events, then $P(A)$	•	[MP PET 1992]
	(a) $P(A) + P(B) - P(A)B$	P(B) (b) $P(A) - P(B)$	(c) $P(A) + P(B)$	(d) $P(A) + P(B) + P(A)P(B)$
		$(B) = 5/6$, $P(A^c) = 5/6$, $P(B) =$		[UPSEAT 2001]
•		(b) Mutually exclusive		
•	-	t at least one of the events	is A and B occurs is 3/5. If A an	-
	(a) 2/5	(b) 4/5	(c) 6/5	(d) 7/5
	If A and B are arbitr	ary events, then		[DCE 2002]
	(a) $P(A \cap B) \ge P(A) + B$	$P(B)$ (b) $P(A \cup B) \le P(A) + P(B)$	(c) $P(A \cap B) = P(A) + P(B)$	(d) None of these
•	If $P(A) = 2/3$, $P(B) = 3$	$1/2$ and $P(A \cup B) = 5/6$ then	events A and B are	[Kerala (Engg.) 2002]
	(a) Mutually exclusi	ive	(b) Independent as well	l as mutually exhaustive
	(c) Independent		(d) Dependent only on A	4
•	A bag contains 5 bla it is a black or red b		3 red balls. If a ball is selected ra	ndomwise, the probability that
				[EAMCET 2002]
	(a) 1/3	(b) 1/4	(c) 5/12	(d) 2/3
•	A card is drawn from		probability that the card will be a	_
	4	(b) $\frac{16}{3}$	(c) $\frac{4}{13}$	(d) $\frac{5}{3}$

ro	ha	hi	litv	-31

				Probability 31
	(a) 1/5	(b) 3/5	(c) 3/40	(d) 29/40
148.	Let A and B be events for	or which $P(A) = x$, $P(B) = y$, $P(A)$	$(A \cap B) = z$, then $P(\overline{A} \cap B)$ equal	S [AMU 1999]
	(a) $(1-x)y$	(b) $1 - x + y$	(c) $y-z$	(d) $1 - x + y - z$
149.	A and B are two events	such that $P(A) = 0.4$, $P(A+B) = 0$	0.7 and $P(AB) = 0.2$, then $P(B) = 0.2$	3) =
	(a) 0.1	(b) 0.3	(c) 0.5	(d) None of these
150.	A card is drawn at rand	om from a pack of cards. The pr	robability of this card being	a red or a queen is
	(a) 1/13	(b) 1/26	(c) 1/2	(d) 7/13
151.	If $P(A) = 0.4, P(B) = x, P(A)$	$\cup B$) = 0.7 and the events A and I	B are mutually exclusive, the	en <i>x</i> =
	(a) 3/10	(b) 1/2	(c) 2/5	(d) 1/5
152.	One card is drawn rand	omly from a pack of 52 cards, the		
	(a) 1/26	(b) 3/26	[Rajasthan PE]	Г 2001, 1996; MP PET 1990, 94] (d) 3/13
153.	·	a total of 7 or 12 with 2 dice, i		[Kurukshetra CEE 2002]
200.	2	· · · · · · · · · · · · · · · · · · ·	-	_
	(a) $\frac{2}{9}$	(b) $\frac{5}{9}$	(c) $\frac{5}{36}$	(d) $\frac{7}{36}$
154.	The probability of thre statement	e mutually exclusive events A, [MNR 1987]	B and C are given by 2/3,	1/4 and 1/6 respectively. The
	(a) Is true	(b) False	(c) Nothing can be said	(d) Could be either
155.	If A_1, A_2, \dots, A_n are any I	n events, then		
	(a) $P(A_1 \cup A_2 \cup \cup A_n) =$	$= P(A_1) + P(A_2) + \dots + P(A_n)$	(b) $P(A_1 \cup A_2 \cup \cup A_n) > P(A_1 \cup A_n) > P($	$(A_1) + P(A_2) + \dots + P(A_n)$
	(c) $P(A_1 \cup A_2 \cup \cup A_n) \le$	$\leq P(A_1) + P(A_2) + \dots + P(A_n)$	(d) None of these	
156.		ents 70 passed in Mathematics dom from the class, has passed		both. The probability that a
	(a) 13/25	(b) 3/25	(c) 17/25	(d) 8/25
157.	A speaks truth in 60% while describing single	cases and <i>B</i> speaks truth in 70% event is	% cases. The probability tha	t they will say the same thing
	(a) 0.56	(b) 0.54	(c) 0.38	(d) 0.94
158.		g a total of 3 or 5 or 11 with two		(4) 10/00
150	(a) 5/36	(b) 1/9	(c) 2/9	(d) 19/36
159.	of these being of same of			awn together. The probablity
	(a) $\frac{1}{84}$	(b) $\frac{1}{21}$	(c) $\frac{5}{84}$	(d) None of these
160.	A card is drawn at rand diamond is	dom from a well shuffled pack [DSSE 1979]	of 52 cards. The probability	y of getting a two of heart or
	(a) $\frac{1}{26}$	(b) $\frac{1}{52}$	(c) $\frac{1}{13}$	(d) None of these
161.	A committee of five is to serve together or not at a	be chosen from a group of 9 peo all is	ple. The probability that a cer	rtain married couple will either
	(a) $\frac{1}{2}$	(b) $\frac{5}{9}$	(c) $\frac{4}{9}$	(d) $\frac{2}{3}$
162.	A and B toss a coin alterwinning is	rnately, the first to show a head	d being the winner. If A star	ts the game, the chance of his
	() (0			[MP PET 1987]
16-	(a) 5/8	(b) 1/2	(c) 1/3	(d) 2/3
163.	II A and B are two even	ts, then the probability of the e	vent that at most one of A, B	occurs, is

165.	The probability of hittin	g a target by three marksmen	are $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$ respective	ely. The probability that one
	and only one of them wil	ll hit the target when they fire s	imultaneously, is	
	(a) $\frac{11}{24}$	(b) $\frac{1}{12}$	(c) $\frac{1}{8}$	(d) None of these
166.	If <i>A</i> speaks truth in 75° stating the same statement	% cases and B in 80% cases, tent, is	then the probability that the	hey contradict each other in
				[MP PET 1997, 2002]
	(a) $\frac{7}{20}$	(b) $\frac{13}{20}$	(c) $\frac{12}{20}$	(d) $\frac{2}{5}$
167.	The probabilities that A of them will be alive at t	and B will die within a year are he end of the year is	p and q respectively, then	the probability that only one
	(a) $p+q$	(b) $p + q - 2qp$	(c) $p+q-pq$	(d) $p+q+pq$
168.		e boxes containing 3 white and dom. Then the probability that 2		
_	(a) 13/32	(b) 1/4	(c) 1/32	(d) 3/16
169.		ests I, II and III. The student is s of the student passing in tests ssful is 1/2, then	_	
	(a) $p = q = 1$		(b) $p = q = 1/2$	
	(c) $p = 1, q = 0$		(d) There are infinite val	ues of p, q
170.	A bag contains 3 white, probability that the third	3 black and 2 red balls. One by l ball is red, is	one three balls are drawn	without replacing them. The
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{2}{3}$	(d) $\frac{1}{4}$
171.	The probability of A , B ,	C solving a problem are $\frac{1}{3}, \frac{2}{7}, \frac{3}{8}$	$\frac{3}{3}$ respectively. If all the th	aree try to solve the problem
	simultaneously, the prob	pability that exactly one of them	will solve it, is	
	(a) $\frac{25}{168}$	(b) $\frac{25}{56}$	(c) $\frac{20}{168}$	(d) $\frac{30}{168}$
172.		have probabilities 0.25 and 0.5 Then the probability that neither		oility that both A and B occur
	(a) 0.39	(b) 0.25	(c) 0.904	(d) None of these
173.	picked out from each bas	oles and 7 oranges and another sket. Find the probability that th	ne fruits are both apples or	both oranges
	(a) 24/144	(b) 56/144	(c) 68/144	(d) 76/144
174.	· · ·	nts. If $P(S)$ denotes the probabi		
	(a) $P(A) + P(B) + P(C) - P(A)$		(b) $P(A) + P(B) + P(C) - P(B)B$	P(C)
	(c) $P(A \cap B) + P(A \cap C) - P$		(d) None of these	
175.	Rajasthan PET 2002]	events, then the probability that		
	(a) $P(A) + P(B) - P(A \cap B)$	(b) $P(A) + P(B) - 2P(A \cap B)$	(c) $P(A) + P(B) - P(A \cup B)$	(d) $P(A) + P(B) - 2P(A \cup B)$

(b) $1 - P(A \cap B)$

(d) All of these

(d) None of these

164. Three persons work independently on a problem. If the respective probabilities that they will solve it are 1/3,

32 Probability

(a) $\frac{2}{5}$

(a) $P(A' \cap B) + P(A \cap B') + P(A' \cap B')$

1/4 and 1/5, then the probability that none can solve it

(c) $P(A') + P(B') + P(A \cup B) - 1$

(d) $P(B) - P(A \cap B)$

[MP PET 2001]

[IIT 1988]

	(a) $P(A \cap B)$ is not less t	than $P(A) + P(B) - 1$	(b) $P(A \cap B)$ is not greater	than $P(A) + P(B)$
	(c) $P(A \cap B) = P(A) + P(B)$	$-P(A \cup B)$	(d) $P(A \cap B) = P(A) + P(B) + B$	$P(A \cup B)$
178.	=	and 4 white balls. Two balls are ond drawn ball is white, is	drawn one by one at rando	om without replacement. The
	(a) $\frac{4}{49}$	(b) $\frac{1}{7}$	(c) $\frac{4}{7}$	(d) $\frac{12}{49}$
179.	If $P(A) = 0.25$, $P(B) = 0.50$	and $P(A \cap B) = 0.14$, then $P(A \cap B)$	\overline{B}) is equal to	[Rajasthan PET 2001]
	(a) 0.61	(b) 0.39	(c) 0.48	(d) None of these
180.	Suppose that A, B, C are	events such that $P(A) = P(B) = P(B)$	$C = \frac{1}{4}, P(AB) = P(CB) = 0, P(AC)$	$0 = \frac{1}{8}$, then $P(A + B) = [MP PET 1992]$
	(a) 0.125	(b) 0.25	(c) 0.375	(d) 0.5
181.	For any two independen	t events E_1 and E_2 $P\{(E_1 \cup E_2) \cap$	$(\overline{E}_1 \cap \overline{E}_2)$ } is	[IIT 1991]
	(a) $\leq \frac{1}{4}$	(b) $> \frac{1}{4}$	$(c) \geq \frac{1}{2}$	(d) None of these
182.	Two cards are drawn was	ithout replacement from a well	-shuffled pack. Find the pr	obability that one of them is
				[UPSEAT 2002]
	(a) $\frac{1}{25}$	(b) $\frac{1}{26}$	(c) $\frac{1}{52}$	(d) None of these
183.	If $P(A \cup B) = 0.8$ and $P(A \cup B) = 0.8$	$(\cap B) = 0.3$, then $P(\overline{A}) + P(\overline{B}) =$		[EAMCET 2003]
	(a) 0.3	(b) 0.5	(c) 0.7	(d) 0.9
184.	If A and B are two indep	endent events such that $P(A \cap B)$	$P' = \frac{3}{25}$ and $P(A' \cap B) = \frac{8}{25}$, th	en P(A) =
	(a) $\frac{1}{5}$	(b) $\frac{3}{8}$	(c) $\frac{2}{5}$	(d) $\frac{4}{5}$
185.	If A and B are two indep	endent events such that $P(A) =$	0.40, $P(B) = 0.50$, then P (ne	either A nor B) is equal to
	(a) 0.90	(b) 0.10	(c) 0.2	(d) 0.3
		Advance	Level	
186.	The probability of India	winning a test match against V	Vest Indies is $\frac{1}{2}$. Assuming	independence from match to
	match, the probability th	nat in a 5 match series India's se	econd win occurs at the thir	d test is
	(a) $\frac{2}{3}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{8}$
187.	A box contains 3 white then the probability of s	and 2 red balls. A ball is drawr econd ball to be red is	n and another ball is drawn	without replacing first ball,
	8	a 2	3	21
	(a) $\frac{8}{25}$	(b) $\frac{2}{5}$	(c) $\frac{3}{5}$	(d) $\frac{21}{25}$
188.		ng a question by three studen	ts are $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{6}$ respectively	v. Probability of question is
	being solved will be			

(c) $P(A) + P(B) - P(A \cap B)$

176. If *A* and *B* are any two events, then $P(\overline{A} \cap B) =$

177. If A and B are any two events, then the true relation is

(b) 1 - P(A) - P(B)

(a) $P(\overline{A})P(\overline{B})$

THIPSEAT	1000

(2)	33
(a)	48

(b)
$$\frac{35}{48}$$

(c)
$$\frac{31}{48}$$

(d)
$$\frac{37}{48}$$

- 189. Three groups of children contain respectively 3 girls and 1 boy, 2 girls and 2 boys, one girl and 3 boys. One child is selected at random from each group. The chance that three selected consisting of 1 girl and 2 boys, is]
 - (a) $\frac{9}{32}$
- (b) $\frac{3}{32}$

(c) $\frac{13}{32}$

- (d) None of these
- **190.** A, B, C are three events for which P(A) = 0.6, P(B) = 0.4, P(C) = 0.5, $P(A \cup B) = 0.8$, $P(A \cap C) = 0.3$ and $P(A \cap B \cap C) = 0.2$. If $P(A \cup B \cup C) \ge 0.85$ then the interval of values of $P(B \cap C)$ is
 - (a) [0.2, 0.35]

(b) [0.55, 0.7]

(c) [0.2, 0.55]

- (d) None of these
- 191. A student has to match three historical events-Dandi March, Quit India Movement and Mahatma Gandhi's assassination with the years 1948, 1930 and 1942. The student has no knowledge of the correct answers and decides to match the events and years randomly. Let $E_i(0 \le i \le 3)$ denote the event that the student gets exactly i correct answers. Then

 - (a) $P(E_0) + P(E_3) = P(E_1)$ (b) $P(E_0)P(E_1) = P(E_3)$
- (c) $P(E_0 \cap E_1) = P(E_2)$ (d) $P(E_0) + P(E_1) + P(E_2) = 1$
- **192.** Given that A, B and C are events such that P(A) = P(B) = P(C) = 1/5, $P(A \cap B) = P(B \cap C) = 0$ and $P(A \cap C) = 1/10$.

The probability that at least one of the events A, B or C occurs is

(a) $\frac{1}{2}$

(b) $\frac{1}{2}$

(c) $\frac{1}{4}$

- (d) 1
- 193. Suppose that a die (with faces marked 1 to 6) is loaded in such a manner that for $K = 1, 2, 3, \ldots, 6$, the probability of the face marked K turning up when die is tossed is proportional to K. The probability of the event that the outcome of a toss of the die will be an even number is equal to

(b) $\frac{4}{7}$

- (c) $\frac{2}{5}$ (d) $\frac{1}{21}$
- 194. An unbiased die is tossed until a number greater than 4 appears. The probability that an even number of tosses is needed is

[IIT Screening 1994]

- (a) 1/2
- (b) 2/5

- (c) 1/5
- (d) 2/3
- **195.** For the three events A, B and C; P(exactly one of the events A or B occurs) = P(exactly one of the events B or B)= P(exactly one of the events C or A occurs) = p and P (all the three events occurs)C occurs) simultaneously) = p^2 , where 0 . Then the probability of at least one of the three events A, B and Coccurring is [IIT 1996]
 - (a) $\frac{3p + 2p^2}{2}$
- (b) $\frac{p + 3p^2}{4}$
- (c) $\frac{p+3p^2}{2}$
- (d) $\frac{3p + 2p^2}{4}$
- 196. A man alternately tosses a coin and throws a dice beginning with the coin. The probability that he gets a head in the coin before he gets a 5 or 6 in the dice is
 - (a) $\frac{3}{4}$

(b) $\frac{1}{2}$

(c) $\frac{1}{3}$

(d) None of these

Conditional Probability

Basic Level

197. Two cards are drawn successively with replacement from a pack of 52 cards. The probability of drawing two aces is

[MNR 1988; UPSEAT 2000]

- (a) $\frac{1}{169}$
- (b) $\frac{1}{221}$

- (c) $\frac{1}{2652}$
- (d) $\frac{4}{663}$
- **198.** A pack of cards contains 4 aces, 4 kings, 4 queens and 4 jacks. Two cards are drawn at random. The probability that at least one of these in an ace, is
 - (a) $\frac{9}{20}$
- (b) $\frac{3}{16}$

(c) $\frac{1}{6}$

- (d) $\frac{1}{9}$
- **199.** From a pack of 52 cards, two cards are drawn one by one without replacement. The probability that first drawn card is king and second is queen, is
 - (a) $\frac{2}{13}$

(b) $\frac{8}{663}$

(c) $\frac{4}{663}$

(d) $\frac{103}{663}$

34	Probability			
200.	_	s two cards are drawn in succe OR the probability that both are PET 1994]		replacement. The probability
	(a) 2/13	(b) 1/51	(c) 1/221	(d) 2/21
201.	_	ics is given to three students 1/4. Probability that the problem EE 2002]	_	e probability of solving the
	(a) 3/4	(b) 1/2	(c) 2/3	(d) 1/3
202.	A coin is tossed and a di	ce is rolled. The probability that	t the coin shows the head an	nd the dice shows 6 is
	(a) 1/8	(b) 1/12	(c) 1/2	(d) 1
203.		ead appears or until the coin has probability that the coin will t		a head does not occur on the
	(a) $\frac{1}{2}$	(b) $\frac{3}{5}$	(c) $\frac{1}{4}$	(d) $\frac{1}{3}$
204.	A bag contains 5 white, the probability that all a	7 red and 8 black balls. If four t re white	balls are drawn one by one v	without replacement, what is
	(a) $\frac{1}{969}$	(b) $\frac{1}{380}$	(c) $\frac{5}{20}$	(d) None of these
205.	_	s numbered from 1 to 19. A tic pility that both the tickets will s		ther ticket is drawn without
	(a) $\frac{9}{19}$	(b) $\frac{8}{18}$	(c) $\frac{9}{18}$	(d) $\frac{4}{19}$
206.	For two events A and B ,	if $P(A) = P\left(\frac{A}{B}\right) = \frac{1}{4}$ and $P\left(\frac{B}{A}\right) = \frac{1}{2}$	$\frac{1}{2}$, then	
	(a) A and B are independ	dent (b)	$P\left(\frac{A'}{B}\right) = \frac{3}{4}$	(c) $P\left(\frac{B'}{A'}\right) = \frac{1}{2}$ (d)
207.	If $P(A) = \frac{1}{2}, P(B) = \frac{1}{3}$ and	$P(A \cap B) = \frac{1}{4}$, then $P\left(\frac{B}{A}\right) =$		
	(a) 1	(b) O	(c) 1/2	(d) 1/3
208.	From a pack of 52 cards second is a king is	s two are drawn with replacem	nent. The probability that th	e first is a diamond and the [MNR 1979]
	(a) 1/26	(b) 17/2704	(c) 1/52	(d) None of these
209.	The probability that a t	eacher will give an unannounce robability that the student will:	ced test during any class m	
	(a) 1/5	(b) 2/5	(c) 7/5	(d) 9/25
210.		ent events such that $0 < P(E) < 1$	• •	[IIT 1989]
	_	ement of the event F) are independent		(b) E^c and F^c are
	(c) $P\left(\frac{E}{F}\right) + P\left(\frac{E^c}{F^c}\right) = 1$		(d) All of these	
211.	The probability of getting [MNR 1983; Kurukshetra	g at least one tail in 4 throws of C EE 1998]	f a coin is	
	(a) 15/16	(b) 1/16	(c) 1/4	(d) None of these
212.		selected and they are multiplied	•	
				[Rajasthan PET 2002]

(c) 16/625

(d) None of these

(b) 18/625

(a) 4/625

(d) None of these

	(a) $\frac{3}{5}$	(b) $\frac{3}{4}$	(c) $\frac{2}{3}$	(d) $\frac{4}{5}$
216.	Seven chits are number number on any selected	red 1 to 7. Three are drawn one chit is 5, is	by one with replacements.	The probability that the least
	(a) $1 - \left(\frac{2}{7}\right)^4$	(b) $4\left(\frac{2}{7}\right)^4$	(c) $\left(\frac{3}{7}\right)^3$	(d) None of these
217.		ckets numbered 1, 2100. To the two chosen tickets is not n		_
	(a) $\frac{1}{8}$	(b) $\frac{13}{15}$	(c) $\frac{1}{9}$	(d) None of these
218.		of these cards have the letter ee cards are picked up at rando	=	
	(a) $\frac{4}{27}$	(b) $\frac{5}{38}$	(c) $\frac{1}{8}$	(d) $\frac{9}{80}$
219.	Let $A = \{2,3,4,\ldots,20\}$. A probability that it is mo	number is chosen at random for	rom the set A and it is foun	d to be a prime number. The
	(a) $\frac{9}{10}$	(b) $\frac{1}{10}$	(c) $\frac{1}{5}$	(d) $\frac{1}{2}$
220.		random from the numbers 10 to hoose three numbers with repl		
	(a) $1 - \left(\frac{3}{5}\right)^3$	(b) $\left(\frac{43}{45}\right)^3$	(c) $1 - \left(\frac{4}{25}\right)^3$	(d) $1 - \left(\frac{43}{45}\right)^3$
221.	woman watches the sho	married man watches a certa ow is 0.5. The probability that a at a wife watches the shows giv	a man watches the show, giv	
	(a) $\frac{7}{8}$	(b) $\frac{3}{5}$	(c) $\frac{2}{7}$	(d) 1
222.	A pair of fair dice is robefore 7 is	olled together till a sum of eith [IIT 1989]	er 5 or 7 is obtained. Then	the probability that 5 comes
	(a) $\frac{1}{5}$	(b) $\frac{2}{5}$	(c) $\frac{4}{5}$	(d) None of these
223.	each bag. The probabili	nd 5 black balls and a second ba ty that one is red and other is b		k balls. A ball is drawn from
	(a) $\frac{3}{20}$	(b) $\frac{21}{40}$	(c) $\frac{3}{8}$	(d) All of these
224.		ke turns in throwing a pair of d hrows first then the probability		ough 9 from both dice will be
	(a) $\frac{9}{17}$	(b) $\frac{8}{17}$	(c) $\frac{8}{9}$	(d) $\frac{1}{9}$
		Advance	Level	

213. A bag contains 4 white balls and 2 black balls. Another contains 3 white balls and 5 black balls. If one ball is

214. A binary number is made up of 16 bits. The probability of an incorrect bit appearing is p and the errors in

215. The probabilities of winning the race by two athletes A and B are $\frac{1}{5}$ and $\frac{1}{4}$. The probability of winning by

(c) ${}^{16}C_1p^{16}$

(c) $\frac{2}{}$

different bits are independent of one another. The probability of forming an incorrect number is

drawn from each bag, then the probability that both are white, is

(b) 0.2

(b) p^{16}

neither of them, is

225.	An anti-aircraft gun t	ake a maximum of	four shots at a	an enemy plane m	oving away from it. T	ne probability of
3.	_	e first, second, thir			.2 and 0.1 respectively	-
	(a) 0.25	(b) 0.21		(c) 0.16	(d) 0.6976	5
226.	If A and B are two eve	ents such that $P(A/B)$	B) = P(A'/B') = p	and $P(B) = 0.05$, the	hen value of p so that	P(B/A) = 0.5 is
	(a) 0.75	(b) 0.85		(c) 0.95	(d) 1	
227.	Eight tickets numbered bag at random. Let <i>A</i> , if the third digit is 0". the land of the l	B and C denote the fo	ollowing events	s: A – "the first digi	l in a bag. One ticket is it is 0" B- "the second on the condition of the	ligit is 0" and <i>C</i> –
228.	A die is rolled three t	-		-		-
	time and E_2 denote the					out frameer each
					/10 (d) $P(E_1) =$	(10 /2)D(E)
		(b) $P(E_2 \cap E_1) =$			•	· · · · · -
229.	A reputed coaching					
	employment for three	e years are $\frac{2}{10}, \frac{3}{10}, \frac{3}{10}$	$\frac{4}{10}, \frac{3}{10}, \frac{6}{10}, \frac{7}{10}, \frac{7}{10}$	$\frac{8}{0}, \frac{5}{10}$. The probab	oility that after 3 year	s at least six of
	these still work in the	coaching is				
	(a) 0.15	(b) 0.19		(c) 0.3	(d) None o	of these
230.	For a biased die the p	robabilities for diffe	erent faces to t	turn up are given l	oelow	
	Face: 1	2 3	4 5			
	Probability: .1	.32 .21	.15 .05			L:L:- f 4 :-Fxxm 0.
	(a) 5/21	(b) 5/22		(c) 4/21	nen the probability tha (d) None (of these
231.	A biased die is tossed				turn up are given belo)W
	Face: 1 Probability: .1	2 3 .24 .19	4 5 .18 .1 <u>9</u>			
	If an even face has tu			-	4. is	[MNR 1992]
	(a) 0.25	(b) 0.42		(c) 0.75	(d) 0.9	. 55 1
232.	A bag X contains 2 w			_	4 white and 2 black b he ball chosen to be wl	_
	(a) 2/15	(b) 7/15	0111 101 111011 011	(c) 8/15	(d) 14/15	1100 10
233.	A man draws a card		playing card	· · · · ·		e continues this
	processes until he get	s a card of spade. The	he probability	that he will fail th	ne first two times is	
	(a) 9/16	(b) 1/16		(c) 9/64	(d) None o	f these
234.	For any two events A					[IIT 1991]
	(a) $P\left(\frac{A}{B}\right) \ge \frac{P(A) + P(B)}{P(B)}$	$\frac{(D-1)}{(D-1)}$, $P(B) \neq 0$ is alway	s true	(b) $P(A \cap B) = P(A \cap B)$	$A - P(A \cap B)$ does not h	old
	(c) $P(A \cup B) = 1 - P(\overline{A}) B$	$P(\overline{B})$, if A and B are	disjoint	(d) None of thes	se	
235.	_	, 0.3, 0.2 respective ding probabilities f	ly. If the group	ρ A wins, the prob	pability of introducing 5 respectively. The pro	a new product is
	(a) 0.18	(b) 0.35		(c) 0.10	(d) 0.63	
236.	If \overline{E} and \overline{F} are the co	omplementary event	s of events E	and F respectively	and if $0 < P(F) < 1$, then	ı
	(a) $P(E/F) + P(\overline{E}/F) = 1$	(b) $P(E/F) + P(E/F)$	$(E/\overline{F}) = 1$	(c) $P(\overline{E}/F) + P(E$	\overline{F}) = 1 (d) $P(E/\overline{F})$	$+P(\overline{E}/\overline{F})=1$
237.	Lot A. D. C. ho throom				•	
	Let A, B, C be till ee ill	utually independent	t events. Consi	der the two staten	nents S_1 and S_2	

Prol	hał	nili	tv	27

	Then			[IIT Screening 1994]
	(a) Both S_1 and S_2 are t	rue (b)	Only S_1 is true	(c) Only S_2 is true (d)
238.		of the people have brown hair son selected at random from th [MNR 1988]		
	(a) 1/5	(b) 3/8	(c) 1/3	(d) 2/3
239.	Let $0 < P(A) < 1, 0 < P(B) < 1$	and $P(A \cup B) = P(A) + P(B) - P(A)$.	P(B). Then	[IIT 1995]
	(a) $P(B/A) = P(B) - P(A)$	(b) $P(A^c \cup B^c) = P(A^c) + (B^c)$	(c) $P(A \cup B)^c = P(A^c)P(B^c)$	(d) $P(A/B) = P(A)$
240.	and B take part in a serie	A and B play a game 12 times, es of 3 games. The probability t	hat they will win alternately	_
	(a) $\frac{5}{72}$	(b) $\frac{5}{36}$	(c) $\frac{19}{27}$	(d) None of these
241.		after the other. The probability	that the number on the firs	t is smaller than the number
	on the second is			
	(a) 1/2	(b) 7/18	(c) 3/4	(d) 5/12
242.	The two friends A and	B have equal number of daug	hters. There are three cine	ema tickets which are to be
	_	aughters of A and B . The probability	pability that all the tickets §	go to daughters of A is $1/20$.
	The number of daughters			
	(a) 4	(b) 5	(c) 6	(d) 3
243.	=	oins. It is known that n of these		
		coin is picked up at random fr	om the bag and tossed. If t	the probability that the toss
	results in a head is 31/42		(2) (
244	(a) 10 The letters of the word P	(b) 8	(c) 6	(d) 25
244.		ROBABILITY are written down		denote the event that two 1's
		ote the event that two B's are to		
	(a) $P(E_1) = P(E_2)$	(b) $P(E_1 \cap E_2) = 2/55$	(c) $D(E + E) = 19/55$	(d) $P(E_2/E_1) = 1/5$
	$(\omega)^{-1}(\Xi_1)^{-1}(\Xi_2)$	(b) $I(L_1 \cap L_2) = 27.55$	(c) $I(E_1 \cup E_2) = 18/33$	$(a) \ \Gamma(B_2, B_1) \ \Gamma(B_2, B_2)$
	(4) 1 (2)	$(b) \ T(E_1 \cap E_2) = 27.33$		te and Total probability
	(4) 1 (4) 1 (42)	Basic Le	Baye's rul	<u> </u>
245.	In an entrance test there which one is correct. The correct answer to a question	Basic Le e are multiple choice question ne probability that a student k tion, then the probability that h	Baye's rules. Solution of the series of the	answers to each question of stion is 90%. If he gets the
245.	In an entrance test there which one is correct. The correct answer to a question	Basic Le e are multiple choice question ne probability that a student k tion, then the probability that h	Baye's rules. Solution of the series of the	e and Total probability
	In an entrance test there which one is correct. The correct answer to a quest (a) $\frac{37}{40}$. Three urns contain 6 results for the contain 6 resu	Basic Le e are multiple choice question ne probability that a student k	Baye's rules. Solution: Soluti	The and Total probability answers to each question of stion is 90%. If he gets the $\frac{1}{9}$ ectively. One of the urns is
	In an entrance test there which one is correct. The correct answer to a quest (a) $\frac{37}{40}$ Three urns contain 6 reselected at random and the first urn is	Basic Lege are multiple choice question the probability that a student know, then the probability that $\frac{1}{37}$ and $\frac{1}{3$	Baye's rules. Solution: Soluti	The and Total probability answers to each question of stion is 90%. If he gets the $\frac{1}{9}$ ectively. One of the urns is
246.	In an entrance test there which one is correct. The correct answer to a quest (a) $\frac{37}{40}$ Three urns contain 6 reselected at random and the first urn is (a) $\frac{1}{3}$ There are 3 bags, each contain 4 and 5 an	Basic Le e are multiple choice question ne probability that a student k tion, then the probability that h (b) $\frac{1}{37}$ ed, 4 black; 4 red, 6 black and a ball is drawn from it. If the	Baye's rule and some state of the series of	answers to each question of stion is 90%. If he gets the (d) $\frac{1}{9}$ ectively. One of the urns is ability that it is drawn from (d) $\frac{2}{3}$ ags, each containing 2 white
246. 247.	In an entrance test there which one is correct. The correct answer to a quest (a) $\frac{37}{40}$. Three urns contain 6 reselected at random and the first urn is (a) $\frac{1}{3}$. There are 3 bags, each coballs and 4 black balls. A first group, is (a) $\frac{2}{63}$. A card from a pack of 52 to be hearts. Find the pro-	Basic Le e are multiple choice question the probability that a student ke tion, then the probability that he (b) $\frac{1}{37}$ and, 4 black; 4 red, 6 black and a ball is drawn from it. If the (b) $\frac{1}{2}$ containing 5 white balls and 3 bl white ball is drawn at random (b) $45/61$ cards is lost. From the remaining bability of the missing card to	Baye's rule and so the probability that this we can be a heart	answers to each question of stion is 90%. If he gets the (d) $\frac{1}{9}$ ectively. One of the urns is ability that it is drawn from (d) $\frac{2}{3}$ ags, each containing 2 white thite ball is from a bag of the (d) None of these ards are drawn and are found
246. 247.	In an entrance test there which one is correct. The correct answer to a quest (a) $\frac{37}{40}$. Three urns contain 6 reselected at random and the first urn is (a) $\frac{1}{3}$. There are 3 bags, each coballs and 4 black balls. A first group, is (a) $\frac{2}{63}$. A card from a pack of 52 to be hearts. Find the pro-	Basic Le e are multiple choice question the probability that a student keetion, then the probability that he (b) $\frac{1}{37}$ and, 4 black; 4 red, 6 black and a ball is drawn from it. If the (b) $\frac{1}{2}$ containing 5 white balls and 3 black white ball is drawn at random (b) $45/61$ cards is lost. From the remaining	Baye's rule and so the probability that this we can be carded of the probability that this we can be carded of the probability that this we can be carded of the pack, two can be carded of the pack.	answers to each question of stion is 90%. If he gets the (d) $\frac{1}{9}$ ectively. One of the urns is ability that it is drawn from (d) $\frac{2}{3}$ ags, each containing 2 white white ball is from a bag of the (d) None of these

	(a) $\frac{38}{65}$	(b) $\frac{38}{63}$	(c) $\frac{17}{65}$	(d) $\frac{1}{3}$
250.	house. If 40% of these	eight master keys to open sever homes are usually left unlocke cts three master keys at randon	d, the probability that the r n before leaving the office is	eal estate man can get into a
	(a) $\frac{3}{8}$	(b) $\frac{7}{8}$	(c) $\frac{5}{8}$	(d) None of these
	(a) 3/8 A bag x contains 3 white and a ball out of it are p	by 2 persons. What is the proba (b) 1/9 balls and 2 black balls and and bicked at random. The probabili	ability that both get equal nu (c) $5/16$ other bag y contains 2 white ty that the ball is white is	(d) None of these
	(a) $\frac{3}{5}$	(b) $\frac{7}{15}$	(c) $\frac{1}{2}$	(d) None of these
	(a) $3/28$ If a coin be tossed n time	year of the 22^{nd} century choses (b) $2/28$ es then probability that the hea	(c) 7/28 d comes odd times is	(d) 5/28 [Rajasthan PET 2002]
_	(a) 1/2	(b) $1/2^n$	(c) $1/2^{n-1}$	(d) None of these
		Advance	Level	
255.	output 5, 4 and 2 perce	nes A, B and C manufacture resent respectively are defective be defective, the probability tha	olts. A bolt is drawn at ran	dom from the product. If the
	(a) $\frac{28}{69}$	(b) $\frac{7}{69}$	(c) $\frac{32}{69}$	(d) $\frac{11}{69}$
256.	of an accident involving	insured 2000 scooter drivers, 4 3 a scooter driver, car driver ar neets with an accident. What is	1000 car drivers and 6000 tond a truck driver is 0.01, 0.0	03 and 0.15 respectively. One
	(a) $\frac{1}{52}$	(b) $\frac{1}{62}$	(c) $\frac{2}{51}$	(d) 1
257.	-	g 3 white and 5 black balls, 4 t and to be white. The probability		
	(a) $\frac{1}{4}$	(b) $\frac{1}{5}$	(c) $\frac{1}{6}$	(d) $\frac{1}{7}$
258.	choices. The probability probability that his ans	either guesses or copies or know that he makes a guess is 1/3 awer is correct, given that he conat he correctly answered it, is	and the probability that he	copies the answer is 1/6. The
	(a) $\frac{24}{27}$	(b) $\frac{24}{29}$	(c) $\frac{24}{31}$	(d) None of these
259.	the total production. 85 produced at plant <i>B</i> mee	es T.Vs at two different plants of out of 100 T.Vs produced at placet the quality standard. A T.V. puality standard.	ant A meet the quality stand produced by the company is that selected T.V. was manu	ards while 65 out of 100 T.Vs selected at random and is not
	(a) $\frac{7}{11}$	(b) $\frac{7}{19}$	(c) $\frac{2}{3}$	(d) None of these
				Binomial distribution
		Basic L	evel	

260.	A coin is tossed 3 times	(OR Three coins are tossed all t	ogether). The probability of	getting at least two heads is [MP PET 1995]
	(a) $\frac{1}{8}$	(b) $\frac{3}{8}$	(c) $\frac{1}{2}$	(d) $\frac{2}{3}$
261.	= -	g at least one head in 3 throws		
262	(a) 7/8 A fair coin is tossed n t	(b) 3/8 ime. If the probability that he	(c) 1/8	(d) None of these
202.	occurs 8 times, then n is		au occurs o times is equal	to the probability that heac
	[Kurukshetra CEE 1998; A		(1) 10	(4) -
263.	(a) 15 The mean and variance	(b) 14 of a binomial distribution are	(c) 12 e 4 and 3 respectively, the	(d) 7 n the probability of getting
	exactly six successes in		, i i i i j	, , , , , , , , , , , , , , , , , , ,
	(a) ${}^{16}C_6 \left(\frac{1}{4}\right)^{10} \left(\frac{3}{4}\right)^6$	(b) ${}^{16}C_6 \left(\frac{1}{4}\right)^6 \left(\frac{3}{4}\right)^{10}$	(c) ${}^{12}C_6 \left(\frac{1}{4}\right)^{10} \left(\frac{3}{4}\right)^6$	(d) $^{12}C_6\left(\frac{1}{4}\right)^6\left(\frac{3}{4}\right)^6$
264.	In a binomial probability	y distribution, mean is 3 and sta	andard deviation is $\frac{3}{2}$. Then	n the probability distribution
	is [AISSE 1979]			
	(a) $\left(\frac{3}{4} + \frac{1}{4}\right)^{12}$	(b) $\left(\frac{1}{4} + \frac{3}{4}\right)^{12}$	(c) $\left(\frac{1}{4} + \frac{3}{4}\right)^9$	(d) $\left(\frac{3}{4} + \frac{1}{4}\right)^9$
265.	If X follows a binomial d	istribution with parameters $n = \frac{1}{n}$	= 6 and p and $4(P(X = 4)) = P(X = 4)$	X = 2), then $p =$
266	(a) 1/2	(b) 1/4	(c) 1/6	(d) 1/3
200.	(a) 18	of a binomial distribution are 6 (b) 12	(c) 10	[MP PET 2000] (d) 9
267.		pinomial distribution with pa	rameters n and p , where	T/TT \
	independent of n and r ,	then		
	(a) $p = \frac{1}{2}$	(b) $p = \frac{1}{3}$	(c) $p = \frac{1}{4}$	(d) None of these
268.	If x denotes the number	of sixes in four consecutive thre	ows of a dice, then $P(x = 4)$ is	is
_	(a) 1/1296	(b) 4/6	(c) 1	(d) 1295/1296
269.	The probability that an consecutive occasions is	event will fail to happen is o.	05. The probability that the	e event will take place on 4
				[Roorkee 1990]
250	(a) 0.00000625		(c) 0.00001875	
270.	successes is	imes. Getting a 3 or a 6 is co [DSSE 1981]	insidered success. Then the	probability of at least two
	(a) $\frac{2}{9}$	(b) $\frac{7}{27}$	(c) $\frac{1}{27}$	(d) None of these
271.	, and the second	of happening an event and q its	21	ce of r successes in n trials is
	(a) ${}^{n}C_{n+r}p^{r}q^{n-r}$	(b) ${}^{n}C_{r}p^{r-1}q^{r+1}$	(c) ${}^nC_rq^{n-r}p^r$	(d) ${}^{n}C_{r}p^{r+1}q^{r-1}$
272.	-	probability of getting exactly 5 l	neads is	
	(a) $\frac{9}{128}$	(b) $\frac{63}{256}$	(c) $\frac{1}{2}$	(d) $\frac{193}{256}$
273.	_	sband-wife couple the chances children being a boy and a girl i		or a girl are the same, the
	(a) $\frac{1}{4}$	(b) 1	(c) $\frac{1}{2}$	(d) $\frac{1}{8}$
274.	The probability that a s swimmers	tudent is not a swimmer is 1/9 [DCE 1999]	5. What is the probability t	hat out of 5 students, 4 are

40	Pro	hal	hii	itt
40	PIU	υa	ננט	ıιν

	•			
	(a) ${}^5C_4\left(\frac{4}{5}\right)^4\frac{1}{5}$	(b) $\left(\frac{4}{5}\right)^4 \frac{1}{5}$	(c) ${}^5C_1 \frac{1}{5} \left(\frac{4}{5}\right)^4 \times {}^5C_4$	(d) None of these
275.	Three coins are tossed	together, then the probabil	ty of getting at least one head	is [Rajasthan PET 2001]
	(a) 1/2	(b) 3/4	(c) 1/8	(d) 7/8
276.	A bag contains 2 white 4 of the balls drawn ar		drawn 5 times with replaceme	ent. The probability that at least
	(a) $\frac{8}{141}$	(b) $\frac{10}{243}$	(c) $\frac{11}{243}$	(d) $\frac{8}{41}$
277•	success is	[AIEEE 2002]		the variance of distribution of
78.	(a) 8/3 A coin is tossed 10 tim	(b) 3/8 es. The probability of gettin	(c) 4/5 g exactly six heads is	(d) 5/4
	(a) 512/513	(b) 105/512	(c) 100/153	(d) $^{10}C_6$
279.	An experiment succeed success	[AMU 1999]		rials there will be at least three
	(a) 4/27	(b) 8/27	(c) 16/27	(d) 24/27
180.	-	the probability that only th		atal. If 6 patients are suffering
	(a) 1458×10^{-5}	(b) 1458×10^{-6}	(c) 41×10^{-6}	(d) 8748×10^{-5}
281.	If the probabilities of least one girl, is	boy and girl to be born are	same, then in a 4 children fa	mily the probability of being at
	(a) $\frac{14}{16}$	(b) $\frac{15}{16}$	(c) $\frac{1}{8}$	(d) $\frac{3}{8}$
282.	A committee has to be present in committee,		men and 4 women. The probab	oility that at least one woman is
	(a) $\frac{1}{42}$	(b) $\frac{41}{42}$	(c) $\frac{2}{63}$	(d) $\frac{1}{7}$
83.			a toss. The mean and the vari	ance of number of successes[AI
	(a) $\mu = 1, \sigma^2 = 2/3$	(b) $\mu = 2/3, \sigma^2 = 1$	(c) $\mu = 2, \sigma^2 = 2/3$	(d) None of these
84.	A coin is tossed 4 time	s. The probability that at le	ast one head turns up is	[MP PET 2000]
	(a) 1/16	(b) 2/16	(c) 14/16	(d) 15/16
85.	If a dice is thrown twice	ce, the probability of occurr	ence of 4 at least once is	[UPSEAT 2003]
	(a) 11/36	(b) 7/12	(c) 35/36	(d) None of these
86.	In a binomial distribut is [EAMCET 2002]	tion the probability of gettir	ng a success is 1/4 and standar	d deviation is 3, then its mean
	(a) 6	(b) 8	(c) 12	(d) 10
87.	If two coins are tossed	5 times, then the probabilit	y of getting 5 heads and 5 tails	s is AMU 2002]
	(a) $\frac{63}{256}$	(b) $\frac{1}{1024}$	(c) $\frac{2}{205}$	(d) $\frac{9}{64}$
88.	6 ordinary dice are rol	led. The probability that at	least half of them will show at	least 3 is
	(a) $41 \times \frac{2^4}{3^6}$	(b) $\frac{2^4}{3^6}$	(c) $20 \times \frac{2^4}{3^6}$	(d) None of these
289.	A fair die is tossed eigl	ht times. Probability that on	the eighth throw a third six is	s observed is
	(a) ${}^{8}C_{3}\frac{5^{5}}{6^{8}}$	(b) $\frac{{}^{7}C_{2}.5^{5}}{6^{8}}$	(c) $\frac{{}^{7}C_{2}.5^{5}}{6^{7}}$	(d) None of these
290.		fixed number of times. If th oility of getting two heads is		heads is equal to that of getting
	(a) $15/2^8$	(b) 2/15	(c) $15/2^{13}$	(d) None of these

291. The probability that a candidate secures a seat in Engineering through "EAMCET" is 1/10. 7 candidates are

selected at random from a centre. The probability that exactly two will get seats is

ro	ha	hi	lit	v 4	1

least three times is [MNR 1994] (a) 291/364 (b) 371/464 (c) 471/502 293. A fair coin is tossed 100 times. The probability of getting fails an odd number of times is (a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these 294. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{33}C_{2}}{^{32}C_{2}}$ (d) None of these 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X=4), P(X=5)$ and $P(X=6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)^{3}}{(n!)^{2}}(\frac{1}{2})^{2}$ (b) $1 - \frac{(2n!)^{3}}{(n!)^{2}}$ (c) $1 - \frac{(2n!)^{3}}{(n!)^{2}}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EMCET 2003] (a) $(3 - \frac{(2nn)^{3}}{n})(\frac{1}{n})^{2}$ (c) $1 - \frac{(2nn)^{3}}{(n)^{3}}(\frac{1}{4})^{2}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EMCET 2003] (a) $(3 - \frac{(2nn)^{3}}{n})(\frac{1}{n})^{2}$ (c) $(3 - \frac{(2nn)^{3}}{(n)^{3}})^{2}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EMCET 2003] (a) $(3 - \frac{(2nn)^{3}}{n})^{2}$ (b) $(3 - \frac$					1100000111119 41
[MNR 1994] (a) 291/364 (b) 371/464 (c) 471/502 (d) 459/512 293. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is (a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these 294. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{39}C_3}{^{32}C_2}$ (d) None of these 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4)$, $P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n)!}{(n!)^2}(\frac{1}{2})^{3n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) 1		(a) $15(0.1)^2(0.9)^5$	(b) $20(0.1)^2(0.9)^5$	(c) $21(0.1)^2(0.9)^5$	(d) $23(0.1)^2(0.9)^5$
(a) $291/364$ (b) $371/464$ (c) $471/502$ (d) $471/502$ (d) $471/502$ (d) $471/502$ (e) $1/8$ (c) $471/502$ (d) $1/8$ (c) $3/8$ (d) None of these (a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these (a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these (a) $1/2$ (b) $1/8$ (c) $\frac{1}{4}$ (d) None of these (a) $\frac{1}{4}$ (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these (a) $\frac{1}{4}$ (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{4}$ (d) None of these (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{9^{2}C_{2}}{^{2}}$ (d) None of these (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{9^{2}C_{2}}{^{2}}$ (d) None of these (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{9^{2}C_{2}}{^{2}}$ (d) None of these (a) $\frac{9}{64}$ (b) $\frac{1}{6}$ (c) $\frac{1}{4} \times \frac{9^{2}C_{2}}{^{2}}$ (d) None of these (a) $\frac{9}{64}$ (b) $\frac{1}{16}$ (c) $\frac{1}{4} \times \frac{9^{2}C_{2}}{^{2}}$ (d) None of these (a) $\frac{9}{4}$ (b) $\frac{1}{16}$ (c) $\frac{1}{4} \times \frac{9^{2}C_{2}}{^{2}}$ (d) None of these (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ (d) $\frac{5}{16}$ (e) $\frac{5}{16}$ (f) $\frac{3}{16}$ (f) $\frac{5}{16}$ (g) $\frac{3}{16}$ (g) $\frac{5}{16}$ (g) $\frac{3}{16}$ (g) $\frac{5}{16}$ (g) $\frac{3}{16}$ (g) $\frac{3}{16}$ (g) $\frac{5}{16}$ (g) $\frac{3}{16}$ (g) $\frac{5}{16}$ (g) $\frac{3}{16}$ (g) $\frac{3}{16}$ (g) $\frac{3}{16}$ (g) $\frac{3}{16}$ (g) $\frac{3}{16}$ (g) $\frac{5}{16}$ (g) $\frac{3}{16}$ (g)	292.	-	a man can hit a target is 3/2	4. He tries 5 times. The proba	ability that he will hit the target at
293. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is (a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these 294. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{{}^{19}C_2}{{}^{22}C_2}$ (d) None of these 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X=4), P(X=5)$ and $P(X=6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is (DCE 2002) (a) $\frac{(2n)^3}{(n)^2}(\frac{1}{2})^2$ (b) $1-\frac{(2n)^3}{(n)^2}$ (c) $1-\frac{(2n)^3}{(n)^2}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is (EAMCET 2003) (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The blas are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is (a) $\frac{7}{9}$ (b) $\frac{7}{9}$ (c) $\frac{7}{9}$ (d) $\frac{7}{9}$ (d) None of these 303. In order to get at least once a head with probability $\frac{7}{2}$ (e) $\frac{1}{3}$ (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the o					[MNR 1994]
293. A fair coin is tossed 100 times. The probability of getting tails an odd number of times is (a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these 294. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{28}C_2}{^{22}C_2}$ (d) None of these 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X=4), P(X=5)$ and $P(X=6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} (\frac{1}{2})^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^3}$ (c) $1 - \frac{(2n!)}{(n!)^3} (\frac{1}{4})^2$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is $\frac{[EAMCET 2003]}{(a) 2}$ (c) $\frac{5}{32}$ (d) $\frac{1}{2}$ (d) None of the 4th time on the $\frac{7}{2}$ (d) $\frac{5}{2}$ (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) None of the se (a) $\frac{1}{2}$ (c) $\frac{5}{2}$ (d) $\frac{1}{2}$ (d) None of these (a) $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) None of the eave the box one at a time with replacement. The probability that a white ball is drawn for the $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (d) $\frac{1}{2}$ (e) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (f) $\frac{1}{2}$ (g) $\frac{1}{2}$					
(a) $1/2$ (b) $1/8$ (c) $3/8$ (d) None of these 294. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{39}C_2}{^{32}C_2}$ (d) None of these Advance Level 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X=4), P(X=5)$ and $P(X=6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these (a) 7 (d) None of these (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)^5}{(n!)^2}(\frac{1}{2})^{2^{3n}}$ (b) $1 - \frac{(2n!)^3}{(n!)^2}$ (c) $1 - \frac{(2n!)^3}{(n!)^2}(\frac{1}{4^n}$ (d) None of these (a) $\frac{(2n!)^5}{(n!)^2}(\frac{1}{4^n})^2$ (b) $\frac{1}{(n!)^2}$ (c) $\frac{1}{(n!)^2}(\frac{(2n!)^3}{4^n})^2$ (d) None of these (a) $\frac{(2n!)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) $\frac{(3n)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) None of these (a) $\frac{(2n!)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) $\frac{(3n)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) $\frac{(3n)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) $\frac{(3n)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) $\frac{(3n)^5}{(n!)^2}(\frac{1}{4^n})^2$ (d) $\frac{(3n)^5}{(n!)^2}(\frac{1}{4^n})^2$				· · · · · · · · · · · · · · · · · · ·	
294. A coin is tossed 7 times. Each time a man calls head. The probability that he wins the toss on more occasions is (a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{39}C_{5}}{^{32}C_{2}}$ (d) None of these 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^{\frac{3}{2}}}(\frac{1}{2})^{\frac{3n}{2}}$ (b) $1 - \frac{(2n!)}{(n!)^{\frac{3}{2}}}$ (c) $1 - \frac{(2n!)}{(n!)^{\frac{3}{2}}}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{70} time on the 7^{70} draw is (a) $\frac{5}{64}$ (b) $\frac{27}{32}$ (c) $\frac{5}{632}$ (d) $\frac{1}{32}$ (d) None of these 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these	293.				
(a) $\frac{1}{4}$ (b) $\frac{5}{8}$ (c) $\frac{1}{2}$ (d) None of these 295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{\frac{39}{20}C_2}{20}$ (d) None of these Advance Level 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} (\frac{1}{2})^{\frac{1}{2^n}}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) $2 - \frac{(n)}{(n!)^2} (\frac{1}{2})^{\frac{1}{2^n}}$ (b) $\frac{1}{2^n} (\frac{2n}{2^n}) (\frac{1}{2^n}) ($		•	· · ·	•	
295. A man draws a card from a pack of 52 cards and then replaces it. After shuffling the pack, he again draws a card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{29}C_2}{^{22}C_2}$ (d) None of these 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} (\frac{1}{2})^{2^{2n}}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [III Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roord (a) 3 (b) 4 (c) 5 (d) None of these	294.	A coin is tossed 7 tir	nes. Each time a man calls he	ead. The probability that he w	vins the toss on more occasions is
card. This he repeats a number of times. The probability that he will draw a heart for the first time in the third draw is (a) $\frac{9}{64}$ (b) $\frac{27}{64}$ (c) $\frac{1}{4} \times \frac{^{39}C_2}{^{52}C_2}$ (d) None of these Advance Level 296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)^2}{(n!)^2}(\frac{1}{2})^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EMMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roorline] point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [III 1992]		(a) $\frac{1}{4}$	(b) $\frac{5}{8}$	(c) $\frac{1}{2}$	(d) None of these
296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roorli (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45 , 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is	295.	card. This he repeat	_	_	
296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roorli (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45 , 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is		(a) $\frac{9}{64}$	(b) $\frac{27}{64}$	(c) $\frac{1}{4} \times \frac{^{39}C_2}{^{52}}$	(d) None of these
296. A fair coin is tossed n times. Let X be the number of times head is observed. If $P(X = 4), P(X = 5)$ and $P(X = 6)$ are in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 (d) 5 (d) 5 (d) 5 (d) 1 (d) 5 (e) 5 (f) 6 (f) 7 (64	64	$4^{-32}C_2$	
in H.P., then n is equal to (a) 7 (b) 10 (c) 14 (d) None of these 297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]			Adv	vance Level	
Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{5}{9}$ (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45 , 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is	296.	A fair coin is tossed	n times. Let X be the number	r of times head is observed. I	f $P(X = 4), P(X = 5)$ and $P(X = 6)$ are
297. Five coins whose faces are marked 2, 3 are tossed. The chance of obtaining a total of 12 is (a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roorle (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is			ial to		
(a) $\frac{1}{32}$ (b) $\frac{1}{16}$ (c) $\frac{3}{16}$ (d) $\frac{5}{16}$ 298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [III 1992]		, , ,	` '	, , -	
298. A coin is tossed $2n$ times. The chance that the number of times one gets head is not equal to the number of times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roorl (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]	297.	Five coins whose fac		_	_
times one gets tail is [DCE 2002] (a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roorlean 3 (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]		(a) $\frac{1}{32}$	(b) $\frac{1}{16}$	(c) $\frac{3}{16}$	(d) $\frac{5}{16}$
(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]	298.	A coin is tossed 2n	times. The chance that the	number of times one gets he	ead is not equal to the number of
(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$ (b) $1 - \frac{(2n!)}{(n!)^2}$ (c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$ (d) None of these 299. A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4^{th} time on the 7^{th} draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]		times one gets tail is	3		
 A coin is tossed n times. The probability of getting head at least once is greater than 0.8, then the least value of n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4th time on the 7th draw is [IIT Screening 1994] (a) 5/64 (b) 27/32 (c) 5/32 (d) 1/2 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) 2/9 (b) 4/9 (c) 1/3 (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roorle (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]					[DCE 2002]
n is [EAMCET 2003] (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4 th time on the 7 th draw is [IIT Screening 1994] (a) 5/64 (b) 27/32 (c) 5/32 (d) 1/2 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) 2/9 (b) 4/9 (c) 1/3 (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]		(a) $\frac{(2n!)}{(n!)^2} \left(\frac{1}{2}\right)^{2n}$	(b) $1 - \frac{(2n!)}{(n!)^2}$	(c) $1 - \frac{(2n!)}{(n!)^2} \cdot \frac{1}{4^n}$	(d) None of these
 (a) 2 (b) 3 (c) 4 (d) 5 300. A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4th time on the 7th draw is [IIT Screening 1994] (a) 5/64 (b) 27/32 (c) 5/32 (d) 1/2 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) 2/9 (b) 4/9 (c) 1/3 (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992] 	299.	A coin is tossed <i>n</i> tir	nes. The probability of gettir	ng head at least once is greate	er than 0.8, then the least value of
 A box contains 24 identical balls, of which 12 are white and 12 are black. The balls are drawn at random from the box one at a time with replacement. The probability that a white ball is drawn for the 4th time on the 7th draw is [IIT Screening 1994] (a) 5/64 (b) 27/32 (c) 5/32 (d) 1/2 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) 2/9 (b) 4/9 (c) 1/3 (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roorle (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992] 			[EAMCET 2003]		
the box one at a time with replacement. The probability that a white ball is drawn for the 4 th time on the 7 th draw is [IIT Screening 1994] (a) $5/64$ (b) $27/32$ (c) $5/32$ (d) $1/2$ 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]			· · =		
draw is (a) 5/64 (b) 27/32 (c) 5/32 (d) 1/2 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) 2/9 (b) 4/9 (c) 1/3 (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]	300.				
 (a) 5/64 (b) 27/32 (c) 5/32 (d) 1/2 301. A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) ²/₉ (b) ⁴/₉ (c) ¹/₃ (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992] 			ne with replacement. The pr		drawn for the 4^{th} time on the 7^{th}
 A die is tossed twice. Getting a number greater than 4 is considered a success. Then the variance of the probability distribution of the number of successes is (a) 2/9 (b) 4/9 (c) 1/3 (d) None of these 302. In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992] 			(b) 27/22		(4) 1/2
probability distribution of the number of successes is (a) $\frac{2}{9}$ (b) $\frac{4}{9}$ (c) $\frac{1}{3}$ (d) None of these 302. In order to get at least once a head with probability ≥ 0.9 , the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]	201				•
In order to get at least once a head with probability ≥0.9, the number of times a coin needs to be tossed is [Roork (a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]	301.	probability distribut	ion of the number of success	ses is	uccess. Then the variance of the
(a) 3 (b) 4 (c) 5 (d) None of these 303. India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]		(a) $\frac{2}{9}$	(b) $\frac{4}{9}$	(c) $\frac{1}{3}$	(d) None of these
point 0, 1 and 2 are 0.45, 0.05 and 0.50 respectively. Assuming that the outcomes are independent, the probability of India getting at least 7 points is [IIT 1992]	302.	_	-		
	303.	point 0, 1 and 2 as	re 0.45, 0.05 and 0.50 res	pectively. Assuming that the	
(a) 5.5/35 (b) 5.55/3 (c) 5.5025 (d) 5.5250		_			(d) 0 0250
		(a) 0.8750	(b) 0.0875	(c) 0.0625	(d) 0.0250

CLICK HERE >>

304.		ulbs, two are defective. Two bu selection being put back in the vithout defect is		
				[MP PET 1987]
	(a) 9/25	(b) 16/25	(c) 4/5	(d) 8/25
305.	If the mean and variance value greater than 1, is	te of a binomial variate X are 2	2 and 1 respectively, then the	he probability that X takes a
	(a) $\frac{2}{3}$	(b) $\frac{4}{5}$	(c) $\frac{7}{8}$	(d) $\frac{15}{16}$
306.	A die is tossed thrice. If distribution of the numb	getting a four is considered a er of successes are	success, then the mean and	d variance of the probability
	(a) $\frac{1}{2}, \frac{1}{12}$	(b) $\frac{1}{6}, \frac{5}{12}$	(c) $\frac{5}{6}, \frac{1}{2}$	(d) None of these
307.		ndependently until each hits hit probability that B will require		ilities 3/5, 5/7 of hitting the
	(a) 6/31	(b) 7/31	(c) 8/31	(d) None of these
308.	A fair coin is tossed <i>n</i> tin	nes. Let X be the number of time	s head occurs. If $P(X = 4), P(X = 4)$	X = 5) and $P(X = 6)$ are in A.P.,
	then value of n is			
	(a) 7	(b) 10	(c) 12	(d) 14
309.	are required to destroy	attack there is a 50% chance the target completely. The mining completely destroying the tar	mum number of bombs whi	_
	(a) 10	(b) 11	(c) 12	(d) None of these
310.	If the mean of a binomia	l distribution is 25, then its sta	ndard deviation lies in the i	nterval given below
	(a) [0, 5)	(b) (o, 5]	(c) [0, 25)	(d) (0, 25]
311.	If n integers taken at rand 3, 7 or 9 is	ndom are multiplied together, t	hen the probability that the	last digit of the product is 1,
	(a) $\frac{2^n}{5^n}$	(b) $\frac{8^n - 2^n}{5^n}$	(c) $\frac{4^n - 2^n}{5^n}$	(d) None of these

312. A bag contains 14 balls of two colours, the number of balls of each colour being the same. 7 balls are drawn at random one by one. The ball in hand is returned to the bag before each new draw. If the probability that at least 3 balls of each colour are drawn is p then

(b) $p = \frac{1}{2}$ (d) $p < \frac{1}{2}$ (c) p < 1

313. An ordinary dice is rolled a certain number of times. The probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times. Then the probability of getting an odd number an odd number of times is

(c) $\frac{1}{2}$ (b) $\frac{5}{16}$ (d) None of these

314. The probability of a bomb hitting a bridge is $\frac{1}{2}$ and two direct hits are needed to destroy it. The least number of bombs required so that the probability of the bridge being destroyed is greater than 0.9, is

(a) 8 (d) 9 (b) 7 (c) 6

315. All the spades are taken out from a pack of cards. From these cards, cards are drawn one by one without replacement till the ace of spade comes. The probability that the ace comes in the $\mathbf{4}^{th}$ draw is

(b) $\frac{12}{13}$ (c) $\frac{4}{13}$ (a) $\frac{1}{13}$ (d) None of these

Probability Assignment (Basic and Advance Level)																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	С	b	b	b	С	d	b	d	b	a	d	a	b	b	С	d	a	a	b
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
d	b	С	С	С	b	a	С	С	С	b	b	d	b	С	b	b	С	b	b
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
a	d	b	a	С	b	b	b	d	С	b	b	b	a	b	С	b	c	b	b
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
a	a	С	a	a	a	a	a	С	d	b	b	a	a	b	b	d	a	С	b
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
a,b	b	С	b	С	d	a	b	b	a	b	d	a,b, c	a,b, c,d	a,b, c,d	a,c	b	d	С	b
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
a	a	a	a,c	b	b	b	b	С	d	a	С	d	С	a	b	С	b	b	С
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
С	С	b	b	d	b	С	С	a	С	a	d	b	d	b	b	a	b	b	a
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
b	С	b	С	d	С	d	С	С	d	a	С	d	b	С	a	b	С	С	a
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
С	d	d	a	a	a	b	a	c,d	d	b	a	d	С	b	d	a,b, c	С	d	d
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
a	b	d	a	d	С	b	a	С	a	a,b,c, d	a	b	b	a	a	a	a	С	С
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
a	b	С	a	d	d	С	С	d	d	a	С	a	d	a	С	С	b	d	d
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
a	b	b	a	d	С	a	a,b,c, d	b	a	С	С	С	a	d	a,d	a	b	c,d	d
241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
d	d	a	a,b,c, d	b	С	b	С	b	С	С	b	d	a	a	a	d	b	b	С
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
a	b	b	a	d	a	a	a	d	b	С	b	С	a	d	С	d	b	С	a
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
b	b	a	d	a	С	a	a	b	С	С	d	a	С	a	d	d	С	b	С
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315					
b	b	b	b	d	d	a	a	b	a	a	a	С	a	a]				

